
Software Reuse
in Safety-Critical Systems

Barbara Lingberg
Leanna Rierson
May 22, 2003

Acronyms

• AC Advisory Circular
• CAST Certification Authorities Software Team
• CNS Communication-Navigation-Surveillance
• COTS Commercial-off-the-shelf
• CSTA Chief Scientific and Technical Advisor
• FAA Federal Aviation Administration
• IEEE Institute of Electrical and Electronics Engineers
• IMA Integrated Modular Avionics
• OOT Object-oriented Technology
• OS Operating System
• RTOS Real-Time Operating System
• TSO Technical Standard Order

Overview

• Software Reuse:
What It Is, Is Not, and Its Goal

• Benefits/Risks/Myths of Software Reuse
• Software Assurance in Civil Aviation
• Approaches to Software Reuse
• FAA Activities Related to Software Reuse
• Summary

Software Reuse:
What It Is

• Process of creating software systems
from existing software assets, rather
than building software systems from
scratch (Krueger)

Software Reuse:
What It Is (cont)

• Assets can be software components,
objects, software requirement analysis
and design models, domain architecture,
database schema, code documentation,
manuals, standards, test scenarios, and
plans (Sodhi)

• May occur within a software system,
across similar systems, or in widely
different systems (Sodhi)

Software Reuse:
What It Is Not

• Software Reuse != Software Salvaging
(Adolf)
� Software reuse is software that is designed

to be reused
� Software salvaging is using software that

was not designed for reuse

Software Reuse:
Its Goal

• From previous development efforts
� Use as much software data as possible

� To reduce time, cost, and risks associated
with re-development

Benefits of Software Reuse

• Meeting business needs
• Higher productivity
• Increased quality
• Quicker time to market
• Better use of resources
• Helps with system complexity issues

Risks of Software Reuse

• Requires upfront investment
• Is a gamble on the future
• Can end up costing more
• Can induce errors
• Must be used cautiously in

safety-critical domains

Myths of Software Reuse

• Reuse is quick, easy, simple, & free
• Buying components means no building
• Components = reuse
• Reuse is only for code
• Maintenance != Development so reuse

does not apply in maintenance
• Increased productivity means loss of jobs

Software Assurance
in Civil Aviation

• RTCA/DO-178B “Software Considerations in
Airborne Systems and Equipment Certification” is
“defacto” guidance document

• Focuses on software aspects of system
development

• Identifies software levels and objectives based
on software contribution of failure conditions

• Used in aviation, CNS systems, military systems,
medical equipment

• Reuse approaches evaluated against RTCA/DO-
178B objectives

Approaches to Software Reuse

• Planning for Reuse
• Domain Engineering
• Software Components
• Object-Oriented Technology
• Portability
• Commercial-off-the-shelf (COTS) Software
• Product Service History

Approaches to Software Reuse:
Planning for Reuse

• Reuse doesn’t just happen – requires
planning, management, and execution

• Planning should address:
� Process for Reuse
� Safety
� Integration - Software/Software and

Software/Hardware
� Portability
� Maintenance
� Re-Verification

Approaches to Software Reuse:
Planning for Reuse (cont)

• Keys to Success (McConnell)
� Take advantage of personnel continuity between old

and new programs
� Do not overestimate savings
� Secure long-term, high-level management commitment

to a reuse program
� Make reuse an integral part of the development process
� Establish a separate reuse group
� Focus on small, sharp, domain-specific components
� Focus design efforts on abstraction & modularity

Approaches to Software Reuse:
Domain Engineering

• Definition: Process of creating assets that
can be managed and reused through
� Domain analysis
� Domain design
� Domain implementation

• Domain is a group or family of related
systems. All systems in that domain share
a set of capabilities and/or data. (Sodhi)

• Domain engineering is a relatively
immature field

Approaches to Software Reuse:
Domain Engineering (cont)

• Offers greatest potential for productivity
and quality gains through:
� Knowledge reuse
� Reuse of architectural domain knowledge
� Repositories of components e.g., general-

purpose libraries of software architectures
� Reuse of software designs and patterns
� Reduction of “cognitive distance”

Approaches to Software Reuse:
Software Components

• What is a Software Component?
� Prewritten elements of software with clear

functionality and well-defined interface
(Rhodes)
� Software code and supporting RTCA/DO-178B

documentation being considered for reuse.
Forms a portion of the software that will be
implemented by the integrator/applicant.
(FAA Draft Advisory Circular)

Approaches to Software Reuse:
Software Components (cont)

• Qualities (Meyer)
� Careful specification of functionality & interface
� Correctness - works as specified
� Robustness - doesn’t fail if used properly
� Ease of identification
� Ease of learning
� Wide-spectrum of coverage
� Consistency
� Generality - useful for multiple environments

• Examples
� Real-time Operating System (RTOS)
� Software Libraries

Approaches to Software Reuse:
Software Components (cont)

• Safety Concerns
� Planning
� Requirements Traceability
� Re-verification
� Interface documents
� Partitioning/protection
� Artifacts
� Maintenance
� Unused code

Approaches to Software Reuse:
Object-Oriented Technology

• Definition: A software development
technique in which a system or
component is expressed in terms of
objects and connections between those
objects (IEEE)

• Centered around “classes” and “objects”
� Class: set of objects that share a common

structure and a common behavior (Booch)
� Object: instance of a class

Approaches to Software Reuse:
Object-Oriented Technology (cont)

• Benefits for Reuse
� Breaks complex systems into manageable pieces
� Easier to implement OO design into code
� Supports use of development tools

• Safety Concerns
� Dead/Deactivated Code
� Dynamic Binding/Dispatch
� Encapsulation
� Inheritance
� Polymorphism

Approaches to Software Reuse:
Portability

• Goal: Transport software to new
platforms and/or environments
with minimal adaptation

Approaches to Software Reuse:
Portability (cont)

• Strategy:
� Identify minimum necessary set of

environmental requirements & assumptions
� Eliminate all unnecessary assumptions

throughout the design
� Identify specific environment interface required
� Anticipate need to “bridge the gap” for

environments which don’t meet interface
assumptions

Approaches to Software Reuse:
Portability (cont)

• Concerns include:
� Operating System inconsistencies
� Different compiler options/effects
� Incompatible libraries
� Run-time problems
� Underestimation of integration effort
� Architectural inconsistency

Approaches to Software Reuse:
Commercial off the Shelf (COTS)

• Definition:
� Commercially available applications sold by

vendors through public catalog listings.
� COTS software is not intended to be

customized or enhanced.
� Contract-negotiated software developed for

a specific application is not COTS software
(RTCA/DO-178B)

• Common uses:
� Operating systems (OS)
� Real-time operating systems (RTOS)

Approaches to Software Reuse:
COTS (cont)

• Concerns of COTS OS include:
� Integrity of design and implementation may be

unknown
� Unknown functionality and side effects may exist
� Negative effect on operation of other software

applications executing using OS functions
� Mitigation approaches may themselves be

implemented in COTS operating system’s
environment
� Unknown errors may exist
� Difficulty in satisfying DO-178B objectives
� Patches may have safety impact

Approaches to Software Reuse:
Product Service History

• Definition: Contiguous period of time
during which the software is operated
within a known environment, and during
which successive failures are recorded
(RTCA/DO-178B)

• Purpose is to gain confidence in software
over a period of time

Approaches to Software Reuse:
Product Service History (cont)

• Considerations:
� Configuration management of the software
� Effectiveness of problem reporting
� Stability and maturity of the software
� Relevance of product service history

environment
� Actual error rates and product service history
� Impact of modifications

Approaches to Software Reuse:
Product Service History (cont)

• Attributes
� Service duration length
� Change control during service
� Proposed use versus service use
� Proposed environment versus service environment
� Number of significant modifications during service
 Hardware and software

� Error detection and reporting capabilities
� Number of in-service errors
� Amount and quality of service history data

available and reviewed

FAA Activities Related to
Software Reuse

• “Software Approval Guidelines” Order,
Chap. 12: Reuse of software life cycle data

• Reusable Software Component Advisory
Circular (8110.RSC draft) – reuse of third
party components

• TSO for Integrated Modular Avionics (IMA)
Hardware Elements – TSO-C153

• IMA Advisory Circular – AC-145

• RTCA Special Committee #200

• Service History Handbook

• CAST Papers

• COTS Research Project

• OO Technology in Aviation Handbook

FAA Activities Related to
Software Reuse (cont)

Summary

• Reuse requires planning
• Techniques and tools exist to help

• Tips for success:
� Obtain top level management support
� Overcome non-technical inhibitors
� Make reuse integral to development process
� Focus on domain-specific components
� Develop reuse guidelines and measurements

• Safety must be a priority
• FAA has several initiatives underway to enable reuse

For More Information

Leanna Rierson
Chief Scientific and Technical Advisor for
Aircraft Computer Software
FAA/AIR-106N
Leanna.Rierson@faa.gov

Barbara Lingberg
Software Program Manager
FAA/AIR-120
Barbara.Lingberg@faa.gov

Software Website: http://av-info.faa.gov/software

